Spectral analysis of random-to-random Markov chains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random walks and Markov chains

This lecture discusses Markov chains, which capture and formalize the idea of a memoryless random walk on a finite number of states, and which have wide applicability as a statistical model of many phenomena. Markov chains are postulated to have a set of possible states, and to transition randomly from one state to a next state, where the probability of transitioning to a particular next state ...

متن کامل

Markov Chains and Random Walks

Let G = (V,E) be a connected, undirected graph with n vertices and m edges. For a vertex v ∈ V , Γ(v) denotes the set of neighbors of v in G. A random walk on G is the following process, which occurs in a sequence of discrete steps: starting at a vertex v0, we proceed at the first step to a random edge incident on v0 and walking along it to a vertex v1, and so on. ”Random chosen neighbor” will ...

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

Wiener numbers of random pentagonal chains

The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.

متن کامل

Lecture 7: Markov Chains and Random Walks

A transition probability Pij corresponds to the probability that the state at time step t+1 will be j, given that the state at time t is i. Therefore, each row in the matrix M is a distribution and ∀i, j ∈ SPij ≥ 0 and ∑ j Pij = 1. Let the initial distribution be given by the row vector x ∈ R, xi ≥ 0 and ∑ i xi = 1. After one step, the new distribution is xM. It is easy to see that xM is again ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2018

ISSN: 0001-8708

DOI: 10.1016/j.aim.2017.10.034